论文标题

部分可观测时空混沌系统的无模型预测

Prompt-Learning for Short Text Classification

论文作者

Zhu, Yi, Zhou, Xinke, Qiang, Jipeng, Li, Yun, Yuan, Yunhao, Wu, Xindong

论文摘要

在短文中,极短的长度,特征稀疏性和高歧义对分类任务构成了巨大挑战。最近,作为针对特定下游任务进行预训练的语言模型的有效方法,及时学习吸引了大量的关注和研究。及时学习背后的主要直觉是将模板插入输入中,并将文本分类任务转换为等效的紧固式任务。但是,大多数迅速学习方法手动扩展标签单词,或仅考虑将知识纳入固定的预测中的类名称,这将不可避免地会在短文本分类任务中引起遗漏和偏见。在本文中,我们提出了一种简单的简短文本分类方法,该方法利用基于知识渊博的扩展来利用及时学习。考虑到短文的特殊特征,该方法可以在扩展标签单词空间期间考虑短文本本身和班级名称。具体而言,从开放知识图中检索了与简短文本中与实体相关的顶级$ n $概念,例如progase,我们通过所选概念和类标签之间的距离计算进一步完善了扩展的标签单词。实验结果表明,与其他微调,及时学习和知识渊博的及时调整方法相比,我们的方法获得了明显的改进,在三个著名数据集中最多可超过6个精度点。

In the short text, the extremely short length, feature sparsity, and high ambiguity pose huge challenges to classification tasks. Recently, as an effective method for tuning Pre-trained Language Models for specific downstream tasks, prompt-learning has attracted a vast amount of attention and research. The main intuition behind the prompt-learning is to insert the template into the input and convert the text classification tasks into equivalent cloze-style tasks. However, most prompt-learning methods expand label words manually or only consider the class name for knowledge incorporating in cloze-style prediction, which will inevitably incur omissions and bias in short text classification tasks. In this paper, we propose a simple short text classification approach that makes use of prompt-learning based on knowledgeable expansion. Taking the special characteristics of short text into consideration, the method can consider both the short text itself and class name during expanding label words space. Specifically, the top $N$ concepts related to the entity in the short text are retrieved from the open Knowledge Graph like Probase, and we further refine the expanded label words by the distance calculation between selected concepts and class labels. Experimental results show that our approach obtains obvious improvement compared with other fine-tuning, prompt-learning, and knowledgeable prompt-tuning methods, outperforming the state-of-the-art by up to 6 Accuracy points on three well-known datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源