论文标题

我们准备好准备强大而有弹性的大满贯了吗?大满贯数据集定量表征的框架

Are We Ready for Robust and Resilient SLAM? A Framework For Quantitative Characterization of SLAM Datasets

论文作者

Ali, Islam, Zhang, Hong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Reliability of SLAM systems is considered one of the critical requirements in modern autonomous systems. This directed the efforts to developing many state-of-the-art systems, creating challenging datasets, and introducing rigorous metrics to measure SLAM performance. However, the link between datasets and performance in the robustness/resilience context has rarely been explored. In order to fill this void, characterization of the operating conditions of SLAM systems is essential in order to provide an environment for quantitative measurement of robustness and resilience. In this paper, we argue that for proper evaluation of SLAM performance, the characterization of SLAM datasets serves as a critical first step. The study starts by reviewing previous efforts for quantitative characterization of SLAM datasets. Then, the problem of perturbation characterization is discussed and the linkage to SLAM robustness/resilience is established. After that, we propose a novel, generic and extendable framework for quantitative analysis and comparison of SLAM datasets. Additionally, a description of different characterization parameters is provided. Finally, we demonstrate the application of our framework by presenting the characterization results of three SLAM datasets: KITTI, EuroC-MAV, and TUM-VI highlighting the level of insights achieved by the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源