论文标题
在调查采样中,最近的邻居比率归因于不完整的多名结果
Nearest neighbor ratio imputation with incomplete multi-nomial outcome in survey sampling
论文作者
论文摘要
无响应是调查采样中的一个常见问题。适当的治疗可能是具有挑战性的,尤其是在处理详细的总计分解时。通常,最接近的邻居插补方法用于处理此类不完整的多项式数据。在本文中,我们调查了最近的邻居比率估计估计量,其中使用辅助变量来识别最接近的供体,并且将捐赠者比例的向量应用于接收者总数与实施比率归档的总数。为了估计渐近方差,我们首先将最近的邻居比率归因为预测匹配的插补的特殊情况,并应用\ cite {yang202020asymptotic}的线性化方法。为了说明不可忽略的采样部分,采用参数和广义添加剂模型来纳入插补估计器的平滑度,从而导致有效的方差估计器。我们将提出的方法应用于美国人口普查局进行的2018年服务年度调查的经验数据估算支出项目。我们的仿真结果证明了我们提出的估计器的有效性,并且还证实了衍生方差估计值即使采样分数不可忽略,衍生方差估计值也具有良好的性能。
Nonresponse is a common problem in survey sampling. Appropriate treatment can be challenging, especially when dealing with detailed breakdowns of totals. Often, the nearest neighbor imputation method is used to handle such incomplete multinomial data. In this article, we investigate the nearest neighbor ratio imputation estimator, in which auxiliary variables are used to identify the closest donor and the vector of proportions from the donor is applied to the total of the recipient to implement ratio imputation. To estimate the asymptotic variance, we first treat the nearest neighbor ratio imputation as a special case of predictive matching imputation and apply the linearization method of \cite{yang2020asymptotic}. To account for the non-negligible sampling fractions, parametric and generalized additive models are employed to incorporate the smoothness of the imputation estimator, which results in a valid variance estimator. We apply the proposed method to estimate expenditures detail items based on empirical data from the 2018 collection of the Service Annual Survey, conducted by the United States Census Bureau. Our simulation results demonstrate the validity of our proposed estimators and also confirm that the derived variance estimators have good performance even when the sampling fraction is non-negligible.