论文标题
在弯曲的太空时间中,dirac费米子的最小量子步行模拟
Minimal quantum walk simulation of Dirac fermions in curved space-times
论文作者
论文摘要
在任意弯曲的太空时间和坐标中通过量子步行进行模拟的问题被重新审视,以(1 + 1)d空间时间为例。引入了网格上的新班次或翻译操作员,以考虑任意几何形状。使用该操作员构建的新的广义量子步行可以在任意弯曲的空间时间和坐标中模拟Dirac Fermions,并且它们的波函数的组件数量与标准Dirac Spinors的组件数量完全相同,而不是以前认为的数字两倍。特别是,在$(1 + 1)$ D太空时间中,每个晶格点只需要一个Qubit,这使得在当前NISQS量子设备上对Dirac Dynamics进行量子模拟变得更加容易。在牛顿后,所谓的重力电磁策略中,狄拉克动力学的数值模拟作为例证。
The problem of simulating through quantum walks Dirac fermions in arbitrary curved space-times and coordinates is revisited, taking (1 + 1)D space-times as an example. A new shift or translation operator on the grid is introduced, to take into account arbitrary geometries. The new, generalised quantum walks built with this operator can simulate Dirac fermions in arbitrary curved space-times and coordinates, and their wave functions have exactly the same number of components as standard Dirac spinors, and not twice that number, as previously believed. In particular, in $(1 + 1)$D space-times, only one qubit is needed at each lattice point, which makes it easier to perform quantum simulations of the Dirac dynamics on current NISQs quantum devices. Numerical simulations of the Dirac dynamics in the post Newtonian, so-called Gravitoelectromagnetism regime are presented as an illustration.