论文标题
使用受限的玻尔兹曼机器的信用组合损失的普遍近似
Universal approximation of credit portfolio losses using Restricted Boltzmann Machines
论文作者
论文摘要
我们引入了基于限制性玻尔兹曼机器(RBMS)的新产品组合信用风险模型,该模型是能够普遍近似损失分布的随机神经网络。我们在1'012 US公司的默认概率的经验数据集上测试了该模型,并且我们表明,在几个信用风险管理任务上,它的表现优于常用参数因子Copula模型(例如高斯或T因子Copula模型)。特别是,该模型可以更好地适合经验损失分布和更准确的风险度量估计。我们介绍了一个重要的抽样程序,该程序允许以计算有效的方式以高置信度估算风险度量,并且比目前可用于Copula模型的Monte Carlo技术有很大的改进。此外,该模型提取的统计因素可以根据基本投资组合部门结构的解释,并为从业人员提供用于管理集中风险的定量工具。最后,我们通过估计各种宏观经济应力测试场景(例如FRB的Dodd-Frank Act压力测试),通过估计压力风险度量(例如压力VAR)来展示如何使用模型进行应力测试。
We introduce a new portfolio credit risk model based on Restricted Boltzmann Machines (RBMs), which are stochastic neural networks capable of universal approximation of loss distributions. We test the model on an empirical dataset of default probabilities of 1'012 US companies and we show that it outperforms commonly used parametric factor copula models -- such as the Gaussian or the t factor copula models -- across several credit risk management tasks. In particular, the model leads to better fits for the empirical loss distribution and more accurate risk measure estimations. We introduce an importance sampling procedure which allows risk measures to be estimated at high confidence levels in a computationally efficient way and which is a substantial improvement over the Monte Carlo techniques currently available for copula models. Furthermore, the statistical factors extracted by the model admit an interpretation in terms of the underlying portfolio sector structure and provide practitioners with quantitative tools for the management of concentration risk. Finally, we show how to use the model for stress testing by estimating stressed risk measures (e.g. stressed VaR) under various macroeconomic stress test scenarios, such as those specified by the FRB's Dodd-Frank Act stress test.