论文标题

离散耐寒空间的分数系列操作员

Fractional series operators on discrete Hardy spaces

论文作者

Rocha, Pablo

论文摘要

我们估算$ h^{p}(\ mathbb {z})$ - $ \ ell^{q}}(\ mathbb {z})$分数系列操作员$t_γ$的界限\ [(t_γb)(t_γb)(j)= \ sum_ \ sum_ {i \ neq \ neq \ neq \ neq \ neq \ neq \ neq \ pm j} \ frac {b(i)} {| i -j |^α| i+ j |^β},\],其中$ 0 \ leqleqγ<1 $,$α,β> 0 $和$α+β= 1 -γ$。通过反示例,我们还表明,运算符$t_γ$不是从$ h^{p}(\ mathbb {z})$限制到$ h^{q}(\ mathbb {z})$。

We estudy the $H^{p}(\mathbb{Z})$ - $\ell^{q}(\mathbb{Z})$ boundedness of the fractional series operator $T_γ$ given by \[ (T_γb)(j) = \sum_{i \neq \pm j} \frac{b(i)}{|i-j|^α|i+j|^β}, \] where $0 \leq γ< 1$, $α, β> 0$ and $α+ β= 1 -γ$. By means of a counter-example, we also show that the operator $T_γ$ is not bounded from $H^{p}(\mathbb{Z})$ into $H^{q}(\mathbb{Z})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源