论文标题

神经计划维修:系统,挑战和解决方案

Neural Program Repair: Systems, Challenges and Solutions

论文作者

Zhong, Wenkang, Li, Chuanyi, Ge, Jidong, Luo, Bin

论文摘要

自动化程序维修(APR)旨在自动修复源代码中的错误。最近,随着深度学习(DL)领域的进步,神经程序修复(NPR)研究的兴起,该研究将APR作为翻译任务从Buggy Code来纠正代码并采用基于Encoder-Decoder架构的神经网络。与其他APR技术相比,NPR方法在适用性方面具有很大的优势,因为它们不需要任何规范(即测试套件)。尽管NPR一直是一个热门的研究方向,但该领域还没有任何概述。为了帮助感兴趣的读者了解现有NPR系统的体系结构,挑战和相应的解决方案,我们就本文的最新研究进行了文献综述。我们首先介绍该领域的背景知识。接下来,要理解,我们将NPR过程分解为一系列模块,并在每个模块上阐述各种设计选择。此外,我们确定了一些挑战并讨论现有解决方案的影响。最后,我们结论并为未来的研究提供了一些有希望的方向。

Automated Program Repair (APR) aims to automatically fix bugs in the source code. Recently, as advances in Deep Learning (DL) field, there is a rise of Neural Program Repair (NPR) studies, which formulate APR as a translation task from buggy code to correct code and adopt neural networks based on encoder-decoder architecture. Compared with other APR techniques, NPR approaches have a great advantage in applicability because they do not need any specification (i.e., a test suite). Although NPR has been a hot research direction, there isn't any overview on this field yet. In order to help interested readers understand architectures, challenges and corresponding solutions of existing NPR systems, we conduct a literature review on latest studies in this paper. We begin with introducing the background knowledge on this field. Next, to be understandable, we decompose the NPR procedure into a series of modules and explicate various design choices on each module. Furthermore, we identify several challenges and discuss the effect of existing solutions. Finally, we conclude and provide some promising directions for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源