论文标题

EINNS:流行病知觉的神经网络

EINNs: Epidemiologically-informed Neural Networks

论文作者

Rodríguez, Alexander, Cui, Jiaming, Ramakrishnan, Naren, Adhikari, Bijaya, Prakash, B. Aditya

论文摘要

我们介绍了Einns,这是一个用于流行病预测的框架,基于机械模型提供的理论理由以及AI模型提供的数据驱动的表达性,以及它们以摄入异质信息的能力。尽管神经预测模型在多个任务中取得了成功,但与流行趋势相关的预测和长期预测仍然是开放的挑战。流行病学模型包含可以在这两个任务中引导我们的机制。但是,它们的摄入数据源和建模复合信号的能力有限。因此,我们建议利用物理知识的神经网络中的工作来学习潜在的流行动力学,并将相关知识转移到另一个摄入多个数据源并具有更合适的感应偏见的神经网络中。与以前的工作相反,我们不假定完整动力学的可观察性,也不需要在训练过程中数字求解ode方程。我们对美国所有州和HHS地区的共同研究和流感预测的彻底实验展示了我们在短期和长期预测中的明显好处,以及在学习对其他非平凡替代方案的机械动力学方面的效果。

We introduce EINNs, a framework crafted for epidemic forecasting that builds upon the theoretical grounds provided by mechanistic models as well as the data-driven expressibility afforded by AI models, and their capabilities to ingest heterogeneous information. Although neural forecasting models have been successful in multiple tasks, predictions well-correlated with epidemic trends and long-term predictions remain open challenges. Epidemiological ODE models contain mechanisms that can guide us in these two tasks; however, they have limited capability of ingesting data sources and modeling composite signals. Thus, we propose to leverage work in physics-informed neural networks to learn latent epidemic dynamics and transfer relevant knowledge to another neural network which ingests multiple data sources and has more appropriate inductive bias. In contrast with previous work, we do not assume the observability of complete dynamics and do not need to numerically solve the ODE equations during training. Our thorough experiments on all US states and HHS regions for COVID-19 and influenza forecasting showcase the clear benefits of our approach in both short-term and long-term forecasting as well as in learning the mechanistic dynamics over other non-trivial alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源