论文标题
SDHCAL原型的最新发展
Recent developments of the SDHCAL prototype
论文作者
论文摘要
在Calice Collaporation中开发的半数字辐射量热量计(SDHCAL)的第一个技术原型的构建和成功运行之后,已经开始了新的r {\&} D努力,以充分验证SDHCAL选项,以供ILC和CEPC Colliders提出的未来实验。 SDHCAL是使用大型玻璃电阻板室(GRPC)作为带有嵌入式读数电子产品的活性介质的采样量量热量计。 GRPC原型大小为1〜m $^2 $,而未来检测器则需要可扩展长度长达3〜m长的GRPC检测器(0.9 $ \ times $ 3〜m $^2 $)。读取的印刷电路板(PCB)由一侧的1〜cm $^2 $铜垫组成,另一侧由64通道Hardroc读取芯片组成。 已经解决了如此大尺寸可扩展探测器的设计(...)第一个完全组装的原型为2〜m $^2 $,预计将在2022年准备好4个GRPC。 此外,正在追求新的开发用途,以替换多grpc的单个GAP GRPC,并追求快速计时电子设备。可以实现大于50 PS的时间分辨率。这将允许遵循量热计中发育的耐药阵雨的时间演变。同时,第一个SDHCAL原型已在梁测试设施中进行了广泛的测试。正在开发精致的分析技术来改善能量和淋浴重建。最新的分析发展涵盖了改善响应空间均匀性的技术,并更好地治疗能量重建中粒子入射角。
After the construction and successful operation of the first technological prototype of the Semi-Digital Hadronic CALorimeter (SDHCAL), developed within the CALICE collaboration, new R{\&}D efforts have been initiated to fully validate the SDHCAL option for future experiments proposed for the ILC and CEPC colliders. The SDHCAL is a sampling hadronic calorimeter using large Glass Resistive Plate Chamber (GRPC) as active medium with embedded readout electronics. The GRPC prototype size is 1~m$^2$ while future detectors require GRPC detectors with scalable length up to 3~m long (0.9$\times$3~m$^2$). The readout Printed Circuit Board (PCB) consists of 1~cm$^2$ copper pads on one side and 64-channel HARDROC readout chips on the other side. The design of such large size scalable detectors has been addressed (...) A first fully assembled prototype of 2~m$^2$ with 4 GRPCs is expected to be ready in year 2022. In addition, new developpements to replace single gap GRPC by multigap GRPC coupled with fast timing electronics are being pursued. A time resolution better than 50 ps is achievable. This will allow to follow the temporal evolution of the hadronic showers developing in the calorimeter. In parallel, the first SDHCAL prototype has been extensively tested in beam test facilities. Refined analysis techniques are being developed to improve the energy and shower reconstruction. The latest analysis developments cover techniques to improve the spatial uniformity of the response and a better treatment of the particle incidence angle in the energy reconstruction.