论文标题

全球融合和投影方法的加速度,用于涉及工会凸集的可行性问题

Global convergence and acceleration of projection methods for feasibility problems involving union convex sets

论文作者

Alcantara, Jan Harold, Lee, Ching-pei

论文摘要

我们证明了涉及工会凸集的可行性问题的经典投影算法的全球融合,该集合可以表达为有限数量的封闭凸组集合的结合。我们提出了一种统一的策略,可以通过研究设定值运算符的固定点迭代来分析全球收敛,该迭代是有限数量的紧凑型上半连续图的结合。这样的广义框架允许对一类近端算法进行分析,以最大程度地减少分段平滑函数的总和,以及有限的许多弱凸功能的最小值和分段平滑凸功能之间的差异。当在两局的可行性问题上实现时,该算法类将恢复交替的预测和平均预测作为特殊情况,因此我们获得了这些投影算法的全局收敛标准。使用这些一般结果,我们得出了足够的条件,以保证几种投影算法的全球收敛,以解决稀疏的仿射可行性问题和线性互补问题的可行性重新印象。值得注意的是,我们获得了与涉及$ p $ matrices的线性互补性问题的交替投影方法和平均投影方法的全局收敛性。通过利用我们考虑的问题类别的结构,我们还提出了具有保证全球收敛性的加速算法。数值结果进一步说明了所提出的加速度方案在效率方面的非加速对应物上显着改善。

We prove global convergence of classical projection algorithms for feasibility problems involving union convex sets, which refer to sets expressible as the union of a finite number of closed convex sets. We present a unified strategy for analyzing global convergence by means of studying fixed-point iterations of a set-valued operator that is the union of a finite number of compact-valued upper semicontinuous maps. Such a generalized framework permits the analysis of a class of proximal algorithms for minimizing the sum of a piecewise smooth function and the difference between pointwise minimum of finitely many weakly convex functions and a piecewise smooth convex function. When realized on two-set feasibility problems, this algorithm class recovers alternating projections and averaged projections as special cases, and thus we obtain global convergence criterion for these projection algorithms. Using these general results, we derive sufficient conditions to guarantee global convergence for several projection algorithms for solving the sparse affine feasibility problem and a feasibility reformulation of the linear complementarity problem. Notably, we obtain global convergence of both the alternating and the averaged projection methods to the solution set for linear complementarity problems involving $P$-matrices. By leveraging the structures of the classes of problems we consider, we also propose acceleration algorithms with guaranteed global convergence. Numerical results further exemplify that the proposed acceleration schemes significantly improve upon their non-accelerated counterparts in efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源