论文标题
半污染和完全离散的弱绿素有限元方法,用于绝对的麦克斯韦粘弹性模型
Semi-discrete and fully discrete weak Galerkin finite element methods for a quasistatic Maxwell viscoelastic model
论文作者
论文摘要
本文认为,对于绝对的麦克斯韦粘弹性模型,弱绿素有限元近似值。空间离散化使用$ k \(k \ geq 1)$的分段多项式用于应力近似,速度近似的度量$ k+1 $,$ k $ $ k $用于元素间边界的速度数值痕迹。完全离散的方法中的时间离散化采用了向后的Euler差异方案。我们展示了半二散和完全离散的解决方案的存在和独特性,并得出了最佳的先验误差估计。提供数值示例以支持理论分析。
This paper considers weak Galerkin finite element approximations for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree $k \ (k\geq 1)$ for the stress approximation, degree $k+1$ for the velocity approximation, and degree $k$ for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.