论文标题

图像质量通过重叠的任务特异性和任务不可吻合的措施评估:用于癌症分割的前列腺多参数MR图像的应用

Image quality assessment by overlapping task-specific and task-agnostic measures: application to prostate multiparametric MR images for cancer segmentation

论文作者

Saeed, Shaheer U., Yan, Wen, Fu, Yunguan, Giganti, Francesco, Yang, Qianye, Baum, Zachary M. C., Rusu, Mirabela, Fan, Richard E., Sonn, Geoffrey A., Emberton, Mark, Barratt, Dean C., Hu, Yipeng

论文摘要

医学成像中的图像质量评估(IQA)可用于确保可以可靠地执行下游临床任务。需要量化图像对特定目标任务的影响(也称为任务舒适性)。最近,已提出了特定于任务的IQA,以同时学习与目标任务预测器同时学习图像无能的控制器。这允许训练有素的IQA控制器来测量图像对目标任务性能的影响,例如使用预测器执行此任务时,例如现代临床应用中的细分和分类神经网络。在这项工作中,我们通过添加基于自动编码作为目标任务的任务无关IQA来提出针对此特定任务IQA方法的扩展。分析由特定于任务和任务不合时宜的IQA认为的低质量图像之间的交叉点可能有助于区分导致目标任务绩效差的较差的基础因素。例如,常见的成像工件可能不会对目标任务产生不利影响,这将导致任务不足的质量和高任务特定的质量,而被认为是临床上具有挑战性的个体案例,无法通过更好的成像设备或协议来改进,这可能会导致高任务不合时宜的质量,但质量低得多。我们首先描述了一种灵活的奖励成型策略,该策略允许调整任务不合时宜和特定于任务的质量评分之间的加权。此外,我们使用来自850名患者的多参数磁共振(MPMR)图像在临床上具有挑战性的目标肿瘤分割的临床挑战性目标任务来评估所提出的算法。提出的奖励塑造策略,具有适当加权的特定任务和任务不合时宜的品质,成功地识别了由于缺陷成像过程而需要重新收购的样本。

Image quality assessment (IQA) in medical imaging can be used to ensure that downstream clinical tasks can be reliably performed. Quantifying the impact of an image on the specific target tasks, also named as task amenability, is needed. A task-specific IQA has recently been proposed to learn an image-amenability-predicting controller simultaneously with a target task predictor. This allows for the trained IQA controller to measure the impact an image has on the target task performance, when this task is performed using the predictor, e.g. segmentation and classification neural networks in modern clinical applications. In this work, we propose an extension to this task-specific IQA approach, by adding a task-agnostic IQA based on auto-encoding as the target task. Analysing the intersection between low-quality images, deemed by both the task-specific and task-agnostic IQA, may help to differentiate the underpinning factors that caused the poor target task performance. For example, common imaging artefacts may not adversely affect the target task, which would lead to a low task-agnostic quality and a high task-specific quality, whilst individual cases considered clinically challenging, which can not be improved by better imaging equipment or protocols, is likely to result in a high task-agnostic quality but a low task-specific quality. We first describe a flexible reward shaping strategy which allows for the adjustment of weighting between task-agnostic and task-specific quality scoring. Furthermore, we evaluate the proposed algorithm using a clinically challenging target task of prostate tumour segmentation on multiparametric magnetic resonance (mpMR) images, from 850 patients. The proposed reward shaping strategy, with appropriately weighted task-specific and task-agnostic qualities, successfully identified samples that need re-acquisition due to defected imaging process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源