论文标题

多重矩阵分解:基于确定性最大化标准和可识别性

Polytopic Matrix Factorization: Determinant Maximization Based Criterion and Identifiability

论文作者

Tatli, Gokcan, Erdogan, Alper T.

论文摘要

我们将多重矩阵分解(PMF)作为一种新的数据分解方法引入。在这个新框架中,我们将输入数据建模为一些从polytope绘制的潜在向量的未知线性变换。从这个意义上讲,本文考虑了半结构化的数据模型,其中输入矩阵被建模为完整列级矩阵的乘积和一个包含来自多层的样品作为其列向量的矩阵。多层人士的选择反映了潜在组成部分的假定特征及其相互关系。作为分解标准,我们提出了潜在载体样品自相关矩阵的决定性最大化(DET-MAX)。我们引入了足够的可识别性条件,该条件要求潜在向量的凸壳包含具有特定紧密度约束的polytope的最大体积椭圆形。基于Det-Max标准和提出的可识别性条件,我们表明所有满足特定对称限制的多元化都符合PMF框架。具有无限的多层选择,为表征潜在向量提供了一种灵活性。特别是,可以定义具有异质特征的潜在向量,从而使属性在子向量级别的属性分配。本文提供了示例,说明了多层选择与相应的特征表示之间的联系。

We introduce Polytopic Matrix Factorization (PMF) as a novel data decomposition approach. In this new framework, we model input data as unknown linear transformations of some latent vectors drawn from a polytope. In this sense, the article considers a semi-structured data model, in which the input matrix is modeled as the product of a full column rank matrix and a matrix containing samples from a polytope as its column vectors. The choice of polytope reflects the presumed features of the latent components and their mutual relationships. As the factorization criterion, we propose the determinant maximization (Det-Max) for the sample autocorrelation matrix of the latent vectors. We introduce a sufficient condition for identifiability, which requires that the convex hull of the latent vectors contains the maximum volume inscribed ellipsoid of the polytope with a particular tightness constraint. Based on the Det-Max criterion and the proposed identifiability condition, we show that all polytopes that satisfy a particular symmetry restriction qualify for the PMF framework. Having infinitely many polytope choices provides a form of flexibility in characterizing latent vectors. In particular, it is possible to define latent vectors with heterogeneous features, enabling the assignment of attributes such as nonnegativity and sparsity at the subvector level. The article offers examples illustrating the connection between polytope choices and the corresponding feature representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源