论文标题
Feigin-Tsygan定理的较高船只扩展
A higher Hodge extension of the Feigin-Tsygan Theorem
论文作者
论文摘要
我们表明,在某个霍奇过滤时完成时,同时分辨率的扩展的非交换性DE RHAM复合物(降低)准确质量形态为周期性循环复合物,而其每个过滤片则是对负循环络合物的准iSomorphic。这扩展了Feigin和Tsygan的经典结果,该结果对应于Hodge学位$ 0 $ 0 $的一部分。该结果应用于\ cite {yeu1,yeu2}的calabi-yau类别的研究。
We show that the extended noncommutative de Rham complex of a cofibrant resolution, when completed at a certain Hodge filtration, is (reduced) quasi-isomorphic to the periodic cyclic complex, while each of its filtration piece is quasi-isomorphic to the negative cyclic complex. This extends a classical result of Feigin and Tsygan, which corresponds to the Hodge degree $0$ part of our quasi-isomorphism. This result is applied to the study of Calabi-Yau categories in \cite{Yeu1, Yeu2}.