论文标题
大多数希钦表示形式非常密集
Most Hitchin representations are strongly dense
论文作者
论文摘要
我们证明,通用的Hitchin表示非常密集:图像中的每对非通勤元素都会生成sl_n(R)的Zariski密集的子组。该证明使用Rapinchuk,Benyash-Krivetz和Chernousov的定理表明,Hitchin表示的集合在Sl_n(R)中表面组的各种表示中是Zariski浓密的。
We prove that generic Hitchin representations are strongly dense: every pair of non commuting elements in their image generate a Zariski-dense subgroup of SL_n(R). The proof uses a theorem of Rapinchuk, Benyash-Krivetz and Chernousov, to show that the set of Hitchin representations is Zariski-dense in the variety of representations of a surface group in SL_n(R).