论文标题
系统安全和人工智能
System Safety and Artificial Intelligence
论文作者
论文摘要
本章基于从系统安全领域的洞察力来预防人工智能(AI)系统的七个课程,以确保安全至关重要域中的基于软件的自动化。 AI在社会领域,公共组织和基础设施之间的新应用具有新的危害,这会导致新形式的伤害,无论是严重和有害的。本文解决了缺乏诊断和消除新的AI系统危害的共识。几十年来,系统安全领域一直涉及由不同程度的基于软件的自动化和决策制定的安全关键系统的事故和危害。该领域涵盖了系统和控制的核心假设,即AI系统不能仅靠模型或算法上的技术设计选择来保护AI系统,而是需要端到端危害分析和设计框架,其中包括使用的背景,受影响的利益相关者以及系统运行的正式和非正式的制度环境。然后,安全性和其他价值是固有的社会技术和新兴系统属性,这些属性需要设计和控制措施,以在系统的技术,社会和机构组成部分中实例化这些措施。本章通过为当今的AI系统安全挑战授予她的核心课程来尊重系统安全先驱南希·莱维森(Nancy Leveson)。对于每节课,都提供具体的工具,用于重新思考和重组设计和治理的AI系统的安全管理。这段历史告诉我们,有效的AI安全管理需要跨学科的方法和一种共同的语言,以允许社会各个层面的参与。
This chapter formulates seven lessons for preventing harm in artificial intelligence (AI) systems based on insights from the field of system safety for software-based automation in safety-critical domains. New applications of AI across societal domains and public organizations and infrastructures come with new hazards, which lead to new forms of harm, both grave and pernicious. The text addresses the lack of consensus for diagnosing and eliminating new AI system hazards. For decades, the field of system safety has dealt with accidents and harm in safety-critical systems governed by varying degrees of software-based automation and decision-making. This field embraces the core assumption of systems and control that AI systems cannot be safeguarded by technical design choices on the model or algorithm alone, instead requiring an end-to-end hazard analysis and design frame that includes the context of use, impacted stakeholders and the formal and informal institutional environment in which the system operates. Safety and other values are then inherently socio-technical and emergent system properties that require design and control measures to instantiate these across the technical, social and institutional components of a system. This chapter honors system safety pioneer Nancy Leveson, by situating her core lessons for today's AI system safety challenges. For every lesson, concrete tools are offered for rethinking and reorganizing the safety management of AI systems, both in design and governance. This history tells us that effective AI safety management requires transdisciplinary approaches and a shared language that allows involvement of all levels of society.