论文标题

自动编码低分辨率MRI,用于对各向异性MRI的语义平滑插值

Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI

论文作者

Sander, Jörg, de Vos, Bob D., Išgum, Ivana

论文摘要

高分辨率医学图像对分析有益,但其获取可能并不总是可行的。或者,可以使用常规的UPPLIPing方法从低分辨率采集创建高分辨率图像,但是这种方法无法利用图像中包含的高级上下文信息。最近,引入了更好的基于深度学习的超分辨率方法。但是,这些方法受其监督特征的限制,即它们需要高分辨率示例进行培训。取而代之的是,我们提出了一种无监督的深度学习语义插值方法,该方法从编码的低分辨率示例中综合了新的中间切片。为了在整个平面方向上实现语义平滑的插值,该方法利用了自动编码器产生的潜在空间。为了生成新的中间切片,使用其凸组合将两个空间相邻切片的潜在空间编码组合在一起。随后,将组合编码解码为中间切片。为了限制模型,为给定数据集定义了语义相似性的概念。为此,引入了新的损失,以利用同一体积切片之间的空间关系。在训练过程中,使用其相邻切片编码的凸组合生成现有的中间切片。使用公开的心脏电影,新生儿大脑和成人脑MRI扫描对该方法进行了训练和评估。在所有评估中,新方法在结构相似性指数量度和峰值信噪比(使用单方面Wilcoxon签名式测试的P <0.001)方面产生明显更好的结果。鉴于该方法的无监督性质,不需要高分辨率训练数据,因此,该方法可以很容易地应用于临床环境中。

High-resolution medical images are beneficial for analysis but their acquisition may not always be feasible. Alternatively, high-resolution images can be created from low-resolution acquisitions using conventional upsampling methods, but such methods cannot exploit high-level contextual information contained in the images. Recently, better performing deep-learning based super-resolution methods have been introduced. However, these methods are limited by their supervised character, i.e. they require high-resolution examples for training. Instead, we propose an unsupervised deep learning semantic interpolation approach that synthesizes new intermediate slices from encoded low-resolution examples. To achieve semantically smooth interpolation in through-plane direction, the method exploits the latent space generated by autoencoders. To generate new intermediate slices, latent space encodings of two spatially adjacent slices are combined using their convex combination. Subsequently, the combined encoding is decoded to an intermediate slice. To constrain the model, a notion of semantic similarity is defined for a given dataset. For this, a new loss is introduced that exploits the spatial relationship between slices of the same volume. During training, an existing in-between slice is generated using a convex combination of its neighboring slice encodings. The method was trained and evaluated using publicly available cardiac cine, neonatal brain and adult brain MRI scans. In all evaluations, the new method produces significantly better results in terms of Structural Similarity Index Measure and Peak Signal-to-Noise Ratio (p< 0.001 using one-sided Wilcoxon signed-rank test) than a cubic B-spline interpolation approach. Given the unsupervised nature of the method, high-resolution training data is not required and hence, the method can be readily applied in clinical settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源