论文标题

亚里曼尼亚的几何形状中的均质大地测量学

Homogeneous geodesics in sub-Riemannian geometry

论文作者

Podobryaev, A. V.

论文摘要

我们研究了亚riemannian歧管的均质测量学,即正常的测量学,是异构体的单参数亚组的轨道。我们获得了一个测量的标准,即在其初始动量方面具有同质性。我们证明,任何弱接合性的次摩曼尼亚均质均匀空间都是大地轨道,这意味着所有测量学都是同质的。我们讨论了一些大地轨道次摩曼尼亚歧管的示例。特别是,我们表明地球轨道carnot组只是步骤$ 1 $和$ 2 $的组。最后,我们至少存在一种均匀的大地测量,我们的情况很广。

We study homogeneous geodesics of sub-Riemannian manifolds, i.e., normal geodesics that are orbits of one-parametric subgroups of isometries. We obtain a criterion for a geodesic to be homogeneous in terms of its initial momentum. We prove that any weakly commutative sub-Riemannian homogeneous space is geodesic orbit, that means all geodesics are homogeneous. We discuss some examples of geodesic orbit sub-Riemannian manifolds. In particular, we show that geodesic orbit Carnot groups are only groups of step $1$ and $2$. Finally, we get a broad condition for existence of at least one homogeneous geodesic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源