论文标题

Narayana多项式和Eulerian多项式的阳性

Positivity of Narayana polynomials and Eulerian polynomials

论文作者

Ma, Shi-Mei, Qi, Hao, Yeh, Jean, Yeh, Yeong-Nan

论文摘要

伽马积极性在有限的几何形状,组合学和数理论中经常出现。由Sagan和Tirrell最近的工作(Adv。Math。,374(2020),107387)的动机,我们研究了伽马积极性与交替的伽马积极性之间的关系。作为应用,我们得出了几种与Narayana多项式和Eulerian多项式相关的交替γ阳性多项式。特别是,我们展示了A和B型的修改后的Narayana多项式组合的交替γ-阳性和Hurwitz的稳定性。我们使用有色$ 2 \ times n $ Young图表,我们提供了三种涉及Narayana数字的统一的组合解释。涉及本文的三种形式。在本文的最后,我们提出了两种猜想,一个涉及硼摩尔多项式,而另一个涉及下降和淘汰的置换者的枚举。

Gamma-positivity appears frequently in finite geometries, combinatorics and number theory. Motivated by the recent work of Sagan and Tirrell (Adv. Math., 374 (2020), 107387), we study the relationships between gamma-positivity and alternating gamma-positivity. As applications, we derive several alternatingly gamma-positive polynomials related to Narayana polynomials and Eulerian polynomials. In particular, we show the alternating gamma-positivity and Hurwitz stability of a combination of the modified Narayana polynomials of types A and B. By using colored $2\times n$ Young diagrams, we present a unified combinatorial interpretations of three identities involving Narayana numbers of type B. A general result of this paper is that every gamma-positive polynomial is also alternatingly semi-gamma-positive. At the end of this paper, we pose two conjectures, one concerns the Boros-Moll polynomials and the other concerns the enumerators of permutations by descents and excedances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源