论文标题
关于太阳Zhi-wei和相关的双胆方程的猜想
On a Conjecture of Sun Zhi-Wei and Related Diophantine Equations
论文作者
论文摘要
对于任何整数$ m \ ge0 $,我们记得三角数是$ \ mathbf {t}(m)= \ frac {m(m+1)} {2} $。 Sun Zhi-wei的猜想指出,任何$ n> 2 $的整数$ 2^n \ pm n $不能是三角形的数字。这项工作的动机是确认这一猜想。
For any integer $m\ge0$, we recall that triangular numbers are those $\mathbf{T}(m)=\frac{m(m+1)}{2}$. A conjecture of Sun Zhi-Wei states that an integer $2^n\pm n$ with any $n>2$ can not be a triangular number. The motivation of this work is to confirm this conjecture.