论文标题

充电球体及其稳定性的确切解决方案。 ii。各向异性流体

Exact solutions for charged spheres and their stability. II. Anisotropic Fluids

论文作者

Dev, Krsna

论文摘要

我们研究了爱因斯坦 - 马克斯韦尔方程的确切溶液,用于静态球形对称带电球体的内部重力场。球体由各向异性流体组成,其电荷分布产生静态径向电场。流体的密度具有$ρ(r)=ρ_O +αr^2 $(此处$ρ_O$,$α$是常数),并且在半径$ r $的范围内的总费用$ q(r)$具有$ q =βr^3 $(带有$β$ a canstance)。我们评估这些球体的$ m/r $的关键值作为$ q/r $的函数,并将这些值与Andréasson公式给出的值进行比较。

We study exact solutions of the Einstein-Maxwell equations for the interior gravitational field of static spherically symmetric charged compact spheres. The spheres consist of an anisotropic fluid with a charge distribution that gives rise to a static radial electric field. The density of the fluid has the form $ρ(r) = ρ_o + αr^2$ (here $ρ_o$ and $α$ are constants) and the total charge $q(r)$ within a sphere of radius $r$ has the form $q = βr^3$ (with $β$ a constant). We evaluate the critical values of $M/R$ for these spheres as a function of $Q/R$ and compare these values with those given by the Andréasson formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源