论文标题

限制活性液滴的界面活性动力学

Interfacial activity dynamics of confined active droplets

论文作者

Ramesh, Prashanth, Hokmabad, Babak Vajdi, Mathijssen, Arnold J. T. M., Pushkin, Dmitri O., Maass, Corinna C.

论文摘要

活性乳液可以自发形成自propel的液滴或流动微型液体。据预测,与自我生成的化学场的相互作用会导致多种高阶流量和化学动力现象。然而,尚不清楚这种反应 - 调查扩散不稳定性如何从化学反应与界面流体动力学之间的相互作用中出现。在这里,我们使用双通道显微镜同时测量流场和化学浓度场,以动态溶解在上层水性表面活性剂溶液中。我们开发了一个具有微型泵的实验性处理设置,这些液滴固定在微流体储层的顶部和底部表面之间,我们将其直接与Brinkman蠕虫模型的预测进行了比较,以说明限制。随着液滴半径的增加,我们观察到(i)从液滴后到前部向前的涡流流迁移,类似于从推杆到拉普勒型游泳者的过渡,(ii)偶极和四极流模式之间的双重性,以及最终(iii),(iii)转变为倍极。我们还研究了动力学在长时间内如何发展。总之,我们的观察结果表明,化学产品的局部积聚会导致表面饱和,从而控制了推进机理。这些多稳定动力学可以通过控制化学堆积的缓慢胶束扩散的竞争时间尺度来解释,并更快地为基础传输机制供电的分子扩散。我们的结果与流动性微型蛋白团直接相关,但也阐明了自propelled液滴和其他活性乳液系统的界面活性动力学

Active emulsions can spontaneously form self-propelled droplets or phoretic micropumps. It has been predicted that the interaction with their self-generated chemical fields can lead to multistable higher-order flows and chemodynamic phenomena. However, it remains unclear how such reaction-advection-diffusion instabilities can emerge from the interplay between chemical reactions and interfacial hydrodynamics. Here, we simultaneously measure the flow fields and the chemical concentration fields using dual-channel microscopy for oil droplets that dynamically solubilize in a supramicellar aqueous surfactant solution. We developed an experimentally tractable setup with micropumps, droplets that are pinned between the top and bottom surfaces of a microfluidic reservoir, which we compare directly to predictions from a Brinkman squirmer model to account for the confinement. With increasing droplet radius, we observe (i) a migration of vortex flows from the posterior to the anterior of the droplet, analogous to a transition from pusher- to puller-type swimmers, (ii) a bistability between dipolar and quadrupolar flow modes, and, eventually, (iii) a transition to multipolar modes. We also investigate how the dynamics evolve over long time periods. Together, our observations suggest that a local build-up of chemical products leads to a saturation of the surface, which controls the propulsion mechanism. These multistable dynamics can be explained by the competing time scales of slow micellar diffusion governing the chemical buildup and faster molecular diffusion powering the underlying transport mechanism. Our results are directly relevant to phoretic micropumps, but also shed light on the interfacial activity dynamics of self-propelled droplets and other active emulsion systems

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源