论文标题
用于动态辐射场的傅立叶式式辐射场实时渲染
Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time
论文作者
论文摘要
隐式神经表示(例如神经辐射场(NERF))主要集中于建模在多视图设置下捕获的静态对象,其中可以通过智能数据结构(例如Plenoctree)实现实时渲染。在本文中,我们提出了一种新颖的傅立叶plenoctree(FPO)技术,以解决有效的神经建模和在自由视图视频(FVV)设置下捕获的动态场景的实时渲染。我们FPO中的关键思想是广义NERF,plenoctree代表,体积融合和傅立叶变换的新型组合。为了加速FPO构建,我们提出了一种新型的粗到精细融合方案,该方案利用可推广的NERF技术通过空间混合来生成树。为了解决动态场景,我们调整隐式网络以建模时间变化的密度和颜色属性的傅立叶系数。最后,我们在动态序列的联合plenoctree结构的叶子上构建FPO并将傅立叶系数直接训练。我们表明,所得的FPO使紧凑的内存过载可以处理动态对象并支持有效的微调。广泛的实验表明,所提出的方法比原始的NERF快3000倍,并且超过了SOTA的数量级加速度,同时保留了高视觉质量,以实现看不见的动态场景的自由观看点。
Implicit neural representations such as Neural Radiance Field (NeRF) have focused mainly on modeling static objects captured under multi-view settings where real-time rendering can be achieved with smart data structures, e.g., PlenOctree. In this paper, we present a novel Fourier PlenOctree (FPO) technique to tackle efficient neural modeling and real-time rendering of dynamic scenes captured under the free-view video (FVV) setting. The key idea in our FPO is a novel combination of generalized NeRF, PlenOctree representation, volumetric fusion and Fourier transform. To accelerate FPO construction, we present a novel coarse-to-fine fusion scheme that leverages the generalizable NeRF technique to generate the tree via spatial blending. To tackle dynamic scenes, we tailor the implicit network to model the Fourier coefficients of timevarying density and color attributes. Finally, we construct the FPO and train the Fourier coefficients directly on the leaves of a union PlenOctree structure of the dynamic sequence. We show that the resulting FPO enables compact memory overload to handle dynamic objects and supports efficient fine-tuning. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF and achieves over an order of magnitude acceleration over SOTA while preserving high visual quality for the free-viewpoint rendering of unseen dynamic scenes.