论文标题

使用边缘收缩和顶点删除来减少独立数和集团数字

Using Edge Contractions and Vertex Deletions to Reduce the Independence Number and the Clique Number

论文作者

Lucke, Felicia, Mann, Felix

论文摘要

我们考虑以下问题:对于给定的图G和两个整数K和D,我们可以在最多k时应用固定的图操作以将给定的图参数$π$减少至少d吗?我们表明,当参数是独立性数字,并且图形操作是顶点删除或边缘收缩时,即使对于固定的d = 1,并且仅限于弦图时,该问题是NP-HARD。我们还给出了两分图的多项式时间算法时,当操作是边缘收缩时,参数为独立数,d是固定的。此外,当参数是集团数字时,我们完成了无H-Free图的复杂性二分法,并且通过证明此问题为NP-HARD($ C_3+P_1 $) - 即使对于固定d = 1,则操作是边缘收缩。我们的结果回答了[Diner等人,理论计算机科学,第746页,第746页。 49-72(2012)]。

We consider the following problem: for a given graph G and two integers k and d, can we apply a fixed graph operation at most k times in order to reduce a given graph parameter $π$ by at least d? We show that this problem is NP-hard when the parameter is the independence number and the graph operation is vertex deletion or edge contraction, even for fixed d=1 and when restricted to chordal graphs. We also give a polynomial time algorithm for bipartite graphs when the operation is edge contraction, the parameter is the independence number and d is fixed. Further, we complete the complexity dichotomy on H-free graphs when the parameter is the clique number and the operation is edge contraction by showing that this problem is NP-hard in ($C_3+P_1$)-free graphs even for fixed d=1. Our results answer several open questions stated in [Diner et al., Theoretical Computer Science, 746, p. 49-72 (2012)].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源