论文标题
使用时间序列相似性在传感器图中查找代表性采样子集
Finding Representative Sampling Subsets in Sensor Graphs using Time Series Similarities
论文作者
论文摘要
随着基于IOT启用的传感器的越来越多的使用,重要的是要使用有效的方法来查询传感器。例如,在电池驱动的温度传感器的密集网络中,通常可以在任何给定时间查询传感器的一个子集,因为可以从采样值估算未采样的传感器的值。如果我们可以将一组传感器划分为脱节的代表性采样子集,每个传感器都足够很好地表示其他传感器,我们可以在采样子集之间交替进行采样,从而显着提高电池寿命。在本文中,我们制定了将代表性采样子集作为节点作为节点的所谓传感器图上的图形问题的问题。我们提出的解决方案子图表由两个阶段组成。在第1阶段,我们基于传感器值的时间序列之间的相似性在传感器图中创建边缘,从而基于可靠的时间序列相似性指标来分析六种不同的技术。在第三阶段,我们提出了两种新技术,并扩展了四个现有技术,以找到最大数量的代表性采样子集。最后,我们提出了AutoSubgraphSample,该样本自动选择给定数据集的I期和II期最佳技术。我们广泛的实验评估表明,我们的方法可以在逼真的误差范围内产生大量的电池寿命改善。
With the increasing use of IoT-enabled sensors, it is important to have effective methods for querying the sensors. For example, in a dense network of battery-driven temperature sensors, it is often possible to query (sample) just a subset of the sensors at any given time, since the values of the non-sampled sensors can be estimated from the sampled values. If we can divide the set of sensors into disjoint so-called representative sampling subsets that each represent the other sensors sufficiently well, we can alternate the sampling between the sampling subsets and thus, increase battery life significantly. In this paper, we formulate the problem of finding representative sampling subsets as a graph problem on a so-called sensor graph with the sensors as nodes. Our proposed solution, SubGraphSample, consists of two phases. In Phase-I, we create edges in the sensor graph based on the similarities between the time series of sensor values, analyzing six different techniques based on proven time series similarity metrics. In Phase-II, we propose two new techniques and extend four existing ones to find the maximal number of representative sampling subsets. Finally, we propose AutoSubGraphSample which auto-selects the best technique for Phase-I and Phase-II for a given dataset. Our extensive experimental evaluation shows that our approach can yield significant battery life improvements within realistic error bounds.