论文标题

Cortexode:通过神经odes学习皮质表面重建

CortexODE: Learning Cortical Surface Reconstruction by Neural ODEs

论文作者

Ma, Qiang, Li, Liu, Robinson, Emma C., Kainz, Bernhard, Rueckert, Daniel, Alansary, Amir

论文摘要

我们提出了Cortexode,这是一个深度学习框架,用于皮质表面重建。 Cortexode利用神经普通微分方程(ODE)来通过学习差异流将输入表面变形为目标形状。表面上的点的轨迹将其建模为ODE,其中其坐标的衍生物通过可学习的Lipschitz-conluble变形网络进行了参数化。这为预防自身干扰提供了理论保证。 Cortexode可以集成到基于自动学习的管道上,该管道可以在不到5秒钟内有效地重建皮质表面。该管道利用3D U-NET来预测大脑磁共振成像(MRI)扫描的白质分割,并进一步生成代表初始表面的签名距离函数。引入快速拓扑校正以确保对球体的同构。遵循等曲面提取步骤,对两个Cortexode模型进行了训练,以分别将初始表面变形为白质和曲面。在包括新生儿(25-45周),年轻人(22-36岁)和老年受试者(55-90岁)(55-90岁)的各个年龄段的大规模神经图像数据集上评估了所提出的管道。我们的实验表明,与常规处理管道相比,基于Cortexode的管道可以达到平均几何误差小于0.2mm的平均几何误差。

We present CortexODE, a deep learning framework for cortical surface reconstruction. CortexODE leverages neural ordinary differential equations (ODEs) to deform an input surface into a target shape by learning a diffeomorphic flow. The trajectories of the points on the surface are modeled as ODEs, where the derivatives of their coordinates are parameterized via a learnable Lipschitz-continuous deformation network. This provides theoretical guarantees for the prevention of self-intersections. CortexODE can be integrated to an automatic learning-based pipeline, which reconstructs cortical surfaces efficiently in less than 5 seconds. The pipeline utilizes a 3D U-Net to predict a white matter segmentation from brain Magnetic Resonance Imaging (MRI) scans, and further generates a signed distance function that represents an initial surface. Fast topology correction is introduced to guarantee homeomorphism to a sphere. Following the isosurface extraction step, two CortexODE models are trained to deform the initial surface to white matter and pial surfaces respectively. The proposed pipeline is evaluated on large-scale neuroimage datasets in various age groups including neonates (25-45 weeks), young adults (22-36 years) and elderly subjects (55-90 years). Our experiments demonstrate that the CortexODE-based pipeline can achieve less than 0.2mm average geometric error while being orders of magnitude faster compared to conventional processing pipelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源