论文标题

通过多种治疗和簇状生存结果的因果推断的灵活方法

A flexible approach for causal inference with multiple treatments and clustered survival outcomes

论文作者

Hu, Liangyuan, Ji, Jiayi, Ennis, Ronald D., Hogan, Joseph W.

论文摘要

当通过观察数据绘制有关多种处理对聚类生存结果影响的因果推断时,我们需要解决多层次数据结构,多种处理,审查和未测量的因果分析的含义。很少有现成的因果推理工具可以同时解决这些问题。我们开发了一个灵活的随机截距加速失败时间模型,其中我们使用贝叶斯添加剂回归树来捕获审查的生存时间和治疗前协变量之间的任意复杂关系,并使用随机截距来捕获群集特异性的主要效果。我们开发了一种有效的马尔可夫链蒙特卡洛算法,以提出有关多种治疗的种群存活效应的后验推断,并检查群集水平效应的变异性。我们进一步提出了一种可解释的灵敏度分析方法,以评估对治疗效果的敏感性对潜在的因果假设的潜在出发幅度,而没有无法实现的混杂。广泛的模拟在经验上验证并证明了我们所提出的方法的良好实践操作特征。我们将提出的方法应用于从国家癌症数据库中得出的较旧的高风险局部前列腺癌患者的数据集中,我们评估了三种治疗方法对患者生存的比较影响,并评估潜在无法测量的混淆的后果。在$ \ textsf {r} $ package $ \ textsf {riaftbart} $中很容易获得此工作中开发的方法。

When drawing causal inferences about the effects of multiple treatments on clustered survival outcomes using observational data, we need to address implications of the multilevel data structure, multiple treatments, censoring and unmeasured confounding for causal analyses. Few off-the-shelf causal inference tools are available to simultaneously tackle these issues. We develop a flexible random-intercept accelerated failure time model, in which we use Bayesian additive regression trees to capture arbitrarily complex relationships between censored survival times and pre-treatment covariates and use the random intercepts to capture cluster-specific main effects. We develop an efficient Markov chain Monte Carlo algorithm to draw posterior inferences about the population survival effects of multiple treatments and examine the variability in cluster-level effects. We further propose an interpretable sensitivity analysis approach to evaluate the sensitivity of drawn causal inferences about treatment effect to the potential magnitude of departure from the causal assumption of no unmeasured confounding. Expansive simulations empirically validate and demonstrate good practical operating characteristics of our proposed methods. Applying the proposed methods to a dataset on older high-risk localized prostate cancer patients drawn from the National Cancer Database, we evaluate the comparative effects of three treatment approaches on patient survival, and assess the ramifications of potential unmeasured confounding. The methods developed in this work are readily available in the $\textsf{R}$ package $\textsf{riAFTBART}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源