论文标题

用于学习网络动力学的图形神经网络和Koopman模型:关于电网瞬变预测的比较研究

Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction

论文作者

Nandanoori, Sai Pushpak, Guan, Sheng, Kundu, Soumya, Pal, Seemita, Agarwal, Khushbu, Wu, Yinghui, Choudhury, Sutanay

论文摘要

持续监视关键基础架构网络(例如电力系统)的时空动态行为,是一项具有挑战性但重要的任务。特别是,对于早期检测到任何不稳定性和预防灾难性故障的不稳定性和预防,需要对功率网格的(电力)瞬态动态轨迹进行准确和及时的预测。预测动态轨迹的现有方法要么依赖于系统的准确物理模型的可用性,使用计算昂贵的时间域模拟,要么仅适用于本地预测问题(例如,单个生成器)。在本文中,我们报告了两种广泛的数据驱动学习模型的应用,以及它们的算法实现和绩效评估 - 在仅使用流媒体测量值和网络拓扑作为输入来预测功率网络中的瞬态轨迹。一类模型基于Koopman操作员理论,该理论允许通过无限维线性算子捕获非线性动态行为。其他类别的模型基于图形卷积神经网络,该网络擅长捕获功率网络中固有的时空相关性。用于训练和测试的瞬态动态数据集通过模拟IEEE 68-BUS系统中的各种负载变化事件来综合模型,该系统由负载变化幅度进行分类,以及连接程度和与最近发电机节点的距离。结果证实,提出的预测模型可以成功地预测系统的后扰动瞬态演化,其精度很高。

Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary for early detection of any instability and prevention of catastrophic failures. Existing approaches for the prediction of dynamic trajectories either rely on the availability of accurate physical models of the system, use computationally expensive time-domain simulations, or are applicable only at local prediction problems (e.g., a single generator). In this paper, we report the application of two broad classes of data-driven learning models -- along with their algorithmic implementation and performance evaluation -- in predicting transient trajectories in power networks using only streaming measurements and the network topology as input. One class of models is based on the Koopman operator theory which allows for capturing the nonlinear dynamic behavior via an infinite-dimensional linear operator. The other class of models is based on the graph convolutional neural networks which are adept at capturing the inherent spatio-temporal correlations within the power network. Transient dynamic datasets for training and testing the models are synthesized by simulating a wide variety of load change events in the IEEE 68-bus system, categorized by the load change magnitudes, as well as by the degree of connectivity and the distance to nearest generator nodes. The results confirm that the proposed predictive models can successfully predict the post-disturbance transient evolution of the system with a high level of accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源