论文标题
限制宇宙学中的曲率密度参数
Constraining the curvature density parameter in cosmology
论文作者
论文摘要
宇宙曲率密度参数已在本工作中受到限制,而与任何背景宇宙学模型无关。进行重建采用非参数高斯过程(GP)。 $ω_{K0} $的约束是通过Markov Chain Carlo(MCMC)分析获得的。晚期宇宙学探针,即超新星(SN)距离模量数据,宇宙计时仪(CC)和径向重子骨振荡($ r $ bao)测量哈勃数据的测量值已用于此目的。结果进一步与红移空间扭曲(RSD)的数据相结合,该数据研究了宇宙中大规模结构的增长。唯一的\ textit {先验}假设是宇宙是均匀的和各向同性的,由FLRW指标描述。结果表明,在重建的域内,在2 $σ$中,空间平坦的宇宙对于背景数据的重建$ 0 <z <2 $。在组合RSD数据时,我们发现获得的结果与空间平坦度相一致,主要在2 $σ$之内,并且始终在重建域中的3 $σ$之内$ 0 <z <2 $。
The cosmic curvature density parameter has been constrained in the present work independent of any background cosmological model. The reconstruction is performed adopting the non-parametric Gaussian Processes (GP). The constraints on $Ω_{k0}$ are obtained via a Markov Chain Monte Carlo (MCMC) analysis. Late-time cosmological probes viz., the Supernova (SN) distance modulus data, the Cosmic Chronometer (CC) and the radial Baryon Acoustic Oscillations ($r$BAO) measurements of the Hubble data have been utilized for this purpose. The results are further combined with the data from redshift space distortions (RSD) which studies the growth of large scale structure in the universe. The only \textit{a priori} assumption is that the universe is homogeneous and isotropic, described by the FLRW metric. Results indicate that a spatially flat universe is well consistent in 2$σ$ within the domain of reconstruction $0<z<2$ for the background data. On combining the RSD data we find that the results obtained are consistent with spatial flatness mostly within 2$σ$ and always within 3$σ$ in the domain of reconstruction $0<z<2$.