论文标题
减少自主驾驶感知的过度自信预测
Reducing Overconfidence Predictions for Autonomous Driving Perception
论文作者
论文摘要
在对象识别的最新深度学习中,软磁体和Sigmoid功能最常用作预测指标输出。这样的层通常会产生过度自信的预测,而不是适当的概率分数,因此可能会损害在自主驾驶和机器人技术中应用的“关键”感知系统的决策。鉴于此,这项工作的实验提出了一种基于根据预训练网络的逻辑层得分计算出的分布的概率方法。我们证明,最大似然(ML)和最大A-posteriori(MAP)功能比SoftMax和基于Sigmoid的预测更适合于概率解释。我们通过RGB图像和LIDARS(RV:Range-View)数据探索不同的传感器模式,与通常的软性型和SIGMOID层相比,我们的方法显示出有希望的性能,并具有启用可解释的概率预测的好处。本文介绍的方法的另一个优点是,可以在现有训练的网络中实现ML和MAP函数,即该方法受益于预训练网络的logit层的输出。因此,由于ML和MAP功能在测试/预测阶段使用,因此无需执行新的训练阶段。
In state-of-the-art deep learning for object recognition, SoftMax and Sigmoid functions are most commonly employed as the predictor outputs. Such layers often produce overconfident predictions rather than proper probabilistic scores, which can thus harm the decision-making of `critical' perception systems applied in autonomous driving and robotics. Given this, the experiments in this work propose a probabilistic approach based on distributions calculated out of the Logit layer scores of pre-trained networks. We demonstrate that Maximum Likelihood (ML) and Maximum a-Posteriori (MAP) functions are more suitable for probabilistic interpretations than SoftMax and Sigmoid-based predictions for object recognition. We explore distinct sensor modalities via RGB images and LiDARs (RV: range-view) data from the KITTI and Lyft Level-5 datasets, where our approach shows promising performance compared to the usual SoftMax and Sigmoid layers, with the benefit of enabling interpretable probabilistic predictions. Another advantage of the approach introduced in this paper is that the ML and MAP functions can be implemented in existing trained networks, that is, the approach benefits from the output of the Logit layer of pre-trained networks. Thus, there is no need to carry out a new training phase since the ML and MAP functions are used in the test/prediction phase.