论文标题

Limref:本地可解释的模型基于不可知论规则的预测解释,并应用于电力智能电表数据

LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for Forecasting, with an Application to Electricity Smart Meter Data

论文作者

Rajapaksha, Dilini, Bergmeir, Christoph

论文摘要

准确的电力需求预测在可持续电力系统中起着至关重要的作用。为了启用更好的决策,尤其是对于最终用户的需求灵活性,不仅有必要提供准确的,而且可以理解可理解的预测。为了提供准确的预测全球预测模型(GFM)在跨时间序列中训练有素,与单变量的预测方法相比,最近在许多需求预测竞赛和现实世界中的应用中显示出了卓越的结果。我们旨在填补全球预测方法的准确性和可解释性之间的差距。为了解释全球模型的预测,我们提出了对预测的局部可解释的模型不合SNOSTIC规则的解释(LIMREF),这是一个本地解释器框架,该框架为特定的预测产生K-最佳影响规则,考虑到全球预测模型是在模型 - 震源的方式中。它提供了不同类型的规则,这些规则可以解释全局模型和反事实规则的预测,这些规则为潜在的更改提供了可行的见解,以获取给定实例的不同输出。我们使用具有诸如温度和日历效应之类的外源特征的大型电力需求数据集进行实验。在这里,我们评估了Limref框架所产生的解释的质量,从定性和定量方面,例如准确性,忠诚度和可理解性,以及针对其他本地解释者的基准测试。

Accurate electricity demand forecasts play a crucial role in sustainable power systems. To enable better decision-making especially for demand flexibility of the end-user, it is necessary to provide not only accurate but also understandable and actionable forecasts. To provide accurate forecasts Global Forecasting Models (GFM) trained across time series have shown superior results in many demand forecasting competitions and real-world applications recently, compared with univariate forecasting approaches. We aim to fill the gap between the accuracy and the interpretability in global forecasting approaches. In order to explain the global model forecasts, we propose Local Interpretable Model-agnostic Rule-based Explanations for Forecasting (LIMREF), a local explainer framework that produces k-optimal impact rules for a particular forecast, considering the global forecasting model as a black-box model, in a model-agnostic way. It provides different types of rules that explain the forecast of the global model and the counterfactual rules, which provide actionable insights for potential changes to obtain different outputs for given instances. We conduct experiments using a large-scale electricity demand dataset with exogenous features such as temperature and calendar effects. Here, we evaluate the quality of the explanations produced by the LIMREF framework in terms of both qualitative and quantitative aspects such as accuracy, fidelity, and comprehensibility and benchmark those against other local explainers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源