论文标题

Ab-Initio对比度估计和冷冻EM图像的降解

Ab-initio Contrast Estimation and Denoising of Cryo-EM Images

论文作者

Shi, Yunpeng, Singer, Amit

论文摘要

背景和客观:冷冻EM图像的对比度因冰层的厚度不均而变化。这种对比变化会影响2-D类平均,3-D AB-Initio建模和3-D异质性分析的质量。当前在3-D迭代精炼期间进行对比度估计。结果,在类平均和AB-Initio建模的早期计算阶段无法获得估计值。本文旨在直接从Ab-Initio阶段的采摘粒子图像解决对比度估计问题,而无需估计3-D体积,图像旋转或类平均值。 方法:我们的分析基础的关键观察结果是,原始图像的2-D协方差矩阵与基础干净图像的协方差,噪声方差以及图像之间的对比变异性有关。我们表明,对比度可变性可以从2-D协方差矩阵得出,并应用现有的协方差Wiener滤波(CWF)框架来估计它。我们还展示了CWF的修改,以估计单个图像的对比度。 结果:与先前的CWF方法相比,我们的方法将对比度估计提高了很大。它的估计准确性通常与知道干净图像的地面真相协方差的甲骨文相提并论。更准确的对比度估计还提高了图像恢复的质量,如合成和实验数据集所示。 结论:本文提出了一种有效的方法,即不使用任何3-D体积信息,直接从嘈杂图像中进行对比度估算。它可以在单个粒子分析的早期阶段进行对比校正,并可以提高下游处理的准确性。

Background and Objective: The contrast of cryo-EM images varies from one to another, primarily due to the uneven thickness of the ice layer. This contrast variation can affect the quality of 2-D class averaging, 3-D ab-initio modeling, and 3-D heterogeneity analysis. Contrast estimation is currently performed during 3-D iterative refinement. As a result, the estimates are not available at the earlier computational stages of class averaging and ab-initio modeling. This paper aims to solve the contrast estimation problem directly from the picked particle images in the ab-initio stage, without estimating the 3-D volume, image rotations, or class averages. Methods: The key observation underlying our analysis is that the 2-D covariance matrix of the raw images is related to the covariance of the underlying clean images, the noise variance, and the contrast variability between images. We show that the contrast variability can be derived from the 2-D covariance matrix and we apply the existing Covariance Wiener Filtering (CWF) framework to estimate it. We also demonstrate a modification of CWF to estimate the contrast of individual images. Results: Our method improves the contrast estimation by a large margin, compared to the previous CWF method. Its estimation accuracy is often comparable to that of an oracle that knows the ground truth covariance of the clean images. The more accurate contrast estimation also improves the quality of image restoration as demonstrated in both synthetic and experimental datasets. Conclusions: This paper proposes an effective method for contrast estimation directly from noisy images without using any 3-D volume information. It enables contrast correction in the earlier stage of single particle analysis, and may improve the accuracy of downstream processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源