论文标题

在正面弯曲的4个manifolds中,完全稳定的最小曲面

Complete stable minimal hypersurfaces in positively curved 4-manifolds

论文作者

Chodosh, Otis, Li, Chao, Stryker, Douglas

论文摘要

我们表明,非负分段曲率(或$ 2 $互助曲率)与完全(非压缩的)两侧稳定稳定的最小超出性的标量曲率刚度的严格阳性在$ 4 $ - manifold culvatator中。特别是,这意味着在封闭的$ 4 $ manifold中,完全双面稳定的最小超出表面不存在,截面曲率为正。 我们的工作带来了新的比较结果。我们还构建了各种示例,显示稳定的最小超曲面的刚性在其他曲率条件下可能会失败。

We show that the combination of non-negative sectional curvature (or $2$-intermediate Ricci curvature) and strict positivity of scalar curvature forces rigidity of complete (non-compact) two-sided stable minimal hypersurfaces in a $4$-manifold with bounded curvature. In particular, this implies the nonexistence of complete two-sided stable minimal hypersurface in a closed $4$-manifold with positive sectional curvature. Our work leads to new comparison results. We also construct various examples showing rigidity of stable minimal hypersurfaces can fail under other curvature conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源