论文标题

智能语义通信网络中的无线资源管理

Wireless Resource Management in Intelligent Semantic Communication Networks

论文作者

Xia, Le, Sun, Yao, Li, Xiaoqian, Feng, Gang, Imran, Muhammad Ali

论文摘要

人工智能(AI)的繁荣奠定了有希望的通信系统范式,即智能语义通信(ISC),在该语义内容中,语义内容而不是传统的位序列是由AI模型编码的,以进行有效的通信。由于背景知识对语义恢复的独特需求,无线资源管理面临ISC的新挑战。在本文中,我们解决了启用ISC的异质网络(ISC-HETNET)中的用户关联(UA)和带宽分配(BA)问题。我们首先将辅助知识库(KB)引入系统模型,并为ISC-HETNET开发一个新的性能指标,该指标在消息(STM)中命名为系统吞吐量。然后,配制了UA和BA的联合优化,其目的是受KB匹配和无线带宽约束的目标。为此,我们提出了一个两阶段的解决方案,包括在第一阶段的随机编程方法,以获得具有语义信心的确定性目标,并在第二阶段获得启发式算法,以达到UA和BA的最佳性。与两种基线算法相比,我们提出的解决方案在STM性能上的数值结果非常优势和可靠性。

The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of background knowledge for semantic recovery, wireless resource management faces new challenges in ISC. In this paper, we address the user association (UA) and bandwidth allocation (BA) problems in an ISC-enabled heterogeneous network (ISC-HetNet). We first introduce the auxiliary knowledge base (KB) into the system model, and develop a new performance metric for the ISC-HetNet, named system throughput in message (STM). Joint optimization of UA and BA is then formulated with the aim of STM maximization subject to KB matching and wireless bandwidth constraints. To this end, we propose a two-stage solution, including a stochastic programming method in the first stage to obtain a deterministic objective with semantic confidence, and a heuristic algorithm in the second stage to reach the optimality of UA and BA. Numerical results show great superiority and reliability of our proposed solution on the STM performance when compared with two baseline algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源