论文标题
通过脉冲和调度合作抑制量子计算机的ZZ串扰
Suppressing ZZ Crosstalk of Quantum Computers through Pulse and Scheduling Co-Optimization
论文作者
论文摘要
噪声是量子计算的重要障碍,$ ZZ $串扰是影响超导量子的最具破坏性的噪声类型之一。抑制$ ZZ $串扰的先前方法主要依赖于特定的芯片设计,这可能会使芯片制造变得复杂并加剧腐烂。在某种程度上,可以通过依靠脉冲优化来抑制$ zz $ crosstalk来避免特殊的芯片设计。但是,现有的方法是不可算的,因为它们所需的时间和内存呈指数增长,而涉及的量子数量。为了解决上述问题,我们提出了一种可扩展的方法,可以使脉冲和调度进行优化。我们优化脉冲以提供抑制门周围$ ZZ $串扰的能力,然后设计调度策略以利用这种能力并在整个电路上实现抑制作用。此类合作的主要优点是它不需要特殊的硬件支持。此外,我们将方法作为一种一般框架,与不同的脉冲优化方法兼容。我们通过模拟和实际量子计算机进行了广泛的评估。仿真结果表明,我们的建议可以提高$ 4 {\ sim} 12 $ QUBITS上的量子计算的保真度,最高为$ 81 \ times $($ 11 \ times $平均$)。 Ramsey在真实量子计算机上的实验还表明,我们的方法可以在很大程度上消除$ ZZ $ crosstalk的效果。
Noise is a significant obstacle to quantum computing, and $ZZ$ crosstalk is one of the most destructive types of noise affecting superconducting qubits. Previous approaches to suppressing $ZZ$ crosstalk have mainly relied on specific chip design that can complicate chip fabrication and aggravate decoherence. To some extent, special chip design can be avoided by relying on pulse optimization to suppress $ZZ$ crosstalk. However, existing approaches are non-scalable, as their required time and memory grow exponentially with the number of qubits involved. To address the above problems, we propose a scalable approach by co-optimizing pulses and scheduling. We optimize pulses to offer an ability to suppress $ZZ$ crosstalk surrounding a gate, and then design scheduling strategies to exploit this ability and achieve suppression across the whole circuit. A main advantage of such co-optimization is that it does not require special hardware support. Besides, we implement our approach as a general framework that is compatible with different pulse optimization methods. We have conducted extensive evaluations by simulation and on a real quantum computer. Simulation results show that our proposal can improve the fidelity of quantum computing on $4{\sim}12$ qubits by up to $81\times$ ($11\times$ on average). Ramsey experiments on a real quantum computer also demonstrate that our method can eliminate the effect of $ZZ$ crosstalk to a great extent.