论文标题

CANTOR END的最小表面的Calabi-Yau问题

The Calabi-Yau problem for minimal surfaces with Cantor ends

论文作者

Forstneric, Franc

论文摘要

我们表明,每个连接的紧凑型或边界的Riemann表面都包含一个cantor套件,其补充允许完整的同条最小沉浸在$ \ mathbb r^3 $中,并带有有界图像。类似的结果使全体形态沉浸至至少$ 2 $的任何复杂的层次中,全态无效的沉浸在$ \ mathbb c^n $中,带有$ n \ ge 3 $,用于holomorphic legendrian legendrian浸入任意的复杂接触中,以超级或超级临时或自我态度,并以任何自我为代表。

We show that every connected compact or bordered Riemann surface contains a Cantor set whose complement admits a complete conformal minimal immersion in $\mathbb R^3$ with bounded image. The analogous result holds for holomorphic immersions into any complex manifold of dimension at least $2$, for holomorphic null immersions into $\mathbb C^n$ with $n\ge 3$, for holomorphic Legendrian immersions into an arbitrary complex contact manifold, and for superminimal immersions in any self-dual or anti-self-dual Einstein four-manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源