论文标题
通过使用灵敏度信息高斯流程学习OPF映射来快速逆变器控制
Fast Inverter Control by Learning the OPF Mapping using Sensitivity-Informed Gaussian Processes
论文作者
论文摘要
快速逆变器控制是对可再生能源的更平稳整合的必要性。调整分布式能源的逆变器注入设定点可以是有效的网格控制机制。但是,最佳地找到此类设定点需要解决最佳功率流(OPF),这可以实时计算征税。这项工作建议使用高斯工艺(GPS)学习从网格条件到OPF最小化器的映射。该GP-OPF模型在带有新的网格条件实例时预测逆变器设定点。培训享有封闭形式的表达,而GP-OPF预测则带有置信区间。为了提高数据效率,我们将OPF映射的敏感性(部分导数)融合到GP-OPF中。这加快了生成培训数据集的过程,因为需要解决较少的OPF实例以达到相同的精度。为了进一步降低计算效率,我们近似GP-OPF的内核函数,利用随机特征的概念,该概念已整齐地扩展到灵敏度数据。我们对OPF的二阶锥体程序(SOCP)放松执行灵敏度分析,其灵敏度可以通过仅求解线性方程系统来计算。使用IEEE 13和123公共汽车基准馈线上的现实世界数据进行了广泛的数值测试证实了GP-OPF的优点。
Fast inverter control is a desideratum towards the smoother integration of renewables. Adjusting inverter injection setpoints for distributed energy resources can be an effective grid control mechanism. However, finding such setpoints optimally requires solving an optimal power flow (OPF), which can be computationally taxing in real time. This work proposes learning the mapping from grid conditions to OPF minimizers using Gaussian processes (GPs). This GP-OPF model predicts inverter setpoints when presented with a new instance of grid conditions. Training enjoys closed-form expressions, and GP-OPF predictions come with confidence intervals. To improve upon data efficiency, we uniquely incorporate the sensitivities (partial derivatives) of the OPF mapping into GP-OPF. This expedites the process of generating a training dataset as fewer OPF instances need to be solved to attain the same accuracy. To further reduce computational efficiency, we approximate the kernel function of GP-OPF leveraging the concept of random features, which is neatly extended to sensitivity data. We perform sensitivity analysis for the second-order cone program (SOCP) relaxation of the OPF, whose sensitivities can be computed by merely solving a system of linear equations. Extensive numerical tests using real-world data on the IEEE 13- and 123-bus benchmark feeders corroborate the merits of GP-OPF.