论文标题
非介绍Bernoulli交叉产品的分类结果
Classification results for nonsingular Bernoulli crossed products
论文作者
论文摘要
我们证明了由自由组和更普遍的自由产品组的非主张Bernoulli动作给出的III型因子的刚性和分类结果。这包括一个大型的非同构伯努利(Bernoulli)跨越III $ _1 $的交叉产品,该产品无法通过Connes $τ$ -Invariant区分。这些是研究概率衡量案例的第一个这样的分类结果。
We prove rigidity and classification results for type III factors given by nonsingular Bernoulli actions of the free groups and more general free product groups. This includes a large family of nonisomorphic Bernoulli crossed products of type III$_1$ that cannot be distinguished by Connes $τ$-invariant. These are the first such classification results beyond the well studied probability measure preserving case.