论文标题
阿贝尔表面中的热带曲线I:曲线的枚举穿过点
Tropical curves in abelian surfaces I: enumeration of curves passing through points
论文作者
论文摘要
本文是一系列三篇论文中的第一部分,该论文致力于通过热带方法研究阿贝尔表面的列举不变性。在本文中,我们考虑了通过$ g $点的固定学位属属属的列举。我们计算由T. nishinou引起的对应定理提供的多样性,并表明可以以Block-Göttsche的样式来完善这种多重性,从而获得热带精制不变性。
This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus $g$ curves of fixed degree passing through $g$ points. We compute the multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of Block-Göttsche to get tropical refined invariants.