论文标题

可靠的深图学习的最新进展:固有的噪音,分配转移和对抗性攻击

Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack

论文作者

Li, Jintang, Wu, Bingzhe, Hou, Chengbin, Fu, Guoji, Bian, Yatao, Chen, Liang, Huang, Junzhou, Zheng, Zibin

论文摘要

深图学习(DGL)在商业和科学领域都取得了显着的进步,从金融和电子商务到药物和先进的物质发现。尽管取得了进展,但将DGL应用于现实世界的应用程序仍面临着一系列可靠性威胁,包括固有的噪音,分配转移和对抗性攻击。这项调查旨在对最新进展进行全面审查,以提高DGL算法对上述威胁的可靠性。与主要关注对抗性攻击和防御的先前相关调查相反,我们的调查涵盖了DGL的更多与可靠性相关的方面,即固有的噪声和分配变化。此外,我们讨论了上述方面之间的关系,并突出了未来研究中待探索的一些重要问题。

Deep graph learning (DGL) has achieved remarkable progress in both business and scientific areas ranging from finance and e-commerce to drug and advanced material discovery. Despite the progress, applying DGL to real-world applications faces a series of reliability threats including inherent noise, distribution shift, and adversarial attacks. This survey aims to provide a comprehensive review of recent advances for improving the reliability of DGL algorithms against the above threats. In contrast to prior related surveys which mainly focus on adversarial attacks and defense, our survey covers more reliability-related aspects of DGL, i.e., inherent noise and distribution shift. Additionally, we discuss the relationships among above aspects and highlight some important issues to be explored in future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源