论文标题
顺序实验中的反事实推断
Counterfactual inference in sequential experiments
论文作者
论文摘要
我们考虑对依次设计的实验进行遵守统计推断,其中使用适应时间随时间的治疗策略为多个时间点分配了多个单位的处理。我们的目标是以最小的量表(每个单位的不同处理下的平均结果)为反事实平均值提供推理保证,并且对自适应治疗政策的假设最少。没有任何关于反事实手段的结构假设,由于比观察到的数据点更多的未知数,这项具有挑战性的任务是不可行的。为了取得进展,我们在反事实手段上引入了潜在因子模型,该模型是非线性混合效应模型的非参数概括以及先前工作中考虑的双线性潜在因子模型。为了进行估计,我们使用一种非参数方法,即最近的邻居的变体,并为每个单元和每个单位的反事实平均值结合了非征收的高概率误差。在规律性条件下,这种约束会导致反事实平均值渐近有效的置信区间,因为单位和时间点的数量和时间点的数量将以合适的速度增长到$ \ infty $。我们通过几个模拟和案例研究来说明我们的理论,该案例研究涉及移动健康临床试验心脏的数据。
We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points using treatment policies that adapt over time. Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale -- mean outcome under different treatments for each unit and each time -- with minimal assumptions on the adaptive treatment policy. Without any structural assumptions on the counterfactual means, this challenging task is infeasible due to more unknowns than observed data points. To make progress, we introduce a latent factor model over the counterfactual means that serves as a non-parametric generalization of the non-linear mixed effects model and the bilinear latent factor model considered in prior works. For estimation, we use a non-parametric method, namely a variant of nearest neighbors, and establish a non-asymptotic high probability error bound for the counterfactual mean for each unit and each time. Under regularity conditions, this bound leads to asymptotically valid confidence intervals for the counterfactual mean as the number of units and time points grows to $\infty$ together at suitable rates. We illustrate our theory via several simulations and a case study involving data from a mobile health clinical trial HeartSteps.