论文标题

普遍的para-bose状态

Generalized para-Bose states

论文作者

Pereira, A. S., Lemos, A. S., Brito, F. A.

论文摘要

在本文中,我们将运动积分构建为一般时间依赖性二次汉密尔顿的para-bose公式,这又与反射算子通勤。在这种情况下,我们从Wigner参数方面获得了挤压真空状态(SVS)和相干状态(CS)的概括。此外,我们表明,由于Wigner参数,广义SV存在完整关系。在研究概率过渡的研究中,我们发现位移参数通过允许访问奇数状态来充当过渡参数,而wigner参数则控制分布的分散。我们表明,通过强加真空状态甚至均等来量化Wigner参数。我们将一般结果应用于时间无关的Para-Bose振荡器的情况,发现坐标和动量的平均值具有类似于简单的谐波振荡器的振荡行为,而标准偏差则根据挤压,位移和wigner参数进行校正。

In this paper, we construct integrals of motion in a para-Bose formulation for a general time-dependent quadratic Hamiltonian, which, in its turn, commutes with the reflection operator. In this context, we obtain generalizations for the squeezed vacuum states (SVS) and coherent states (CS) in terms of the Wigner parameter. Furthermore, we show that there is a completeness relation for the generalized SVS owing to the Wigner parameter. In the study of the probability transition, we found that the displacement parameter acts as a transition parameter by allowing access to odd states, while the Wigner parameter controls the dispersion of the distribution. We show that the Wigner parameter is quantized by imposing that the vacuum state has even parity. We apply the general results to the case of the time-independent para-Bose oscillator and find that the mean values of the coordinate and momentum have an oscillatory behavior similarly to the simple harmonic oscillator, while the standard deviation presents corrections in terms of the squeeze, displacement, and Wigner parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源