论文标题
意见有所不同吗?首先诊断!
Opinions Vary? Diagnosis First!
论文作者
论文摘要
随着深度学习技术的进步,从底面图像中提出了越来越多的用于视盘和杯子(OD/OC)细分的方法。在临床上,多位临床专家通常会注释OD/OC细分以减轻个人偏见。但是,很难在多个标签上训练自动化的深度学习模型。解决该问题的一种普遍做法是多数票,例如,取平均多个标签。但是,这种策略忽略了医学专家的不同专家。通过观察到OD/OC分割通常用于临床上的青光眼诊断的动机,在本文中,我们提出了一种新型策略,以通过青光眼诊断性能融合多评位者OD/OC分割标签。具体而言,我们通过细心的青光眼诊断网络评估每个评估者的专业性。对于每个评估者,其对诊断的贡献将反映为专家图。为了确保不同青光眼诊断模型的专家图是一般性的,我们进一步提出了专家生成器(EXPG),以消除优化过程中的高频组件。基于获得的专家图,可以将多评位者标签融合为单一的地面真相,我们将其称为诊断第一基地真相(diagfirstgt)。实验结果表明,通过将diagfirstgt用作地面真相,OD/OC分割网络将预测具有优质诊断性能的面膜。
With the advancement of deep learning techniques, an increasing number of methods have been proposed for optic disc and cup (OD/OC) segmentation from the fundus images. Clinically, OD/OC segmentation is often annotated by multiple clinical experts to mitigate the personal bias. However, it is hard to train the automated deep learning models on multiple labels. A common practice to tackle the issue is majority vote, e.g., taking the average of multiple labels. However such a strategy ignores the different expertness of medical experts. Motivated by the observation that OD/OC segmentation is often used for the glaucoma diagnosis clinically, in this paper, we propose a novel strategy to fuse the multi-rater OD/OC segmentation labels via the glaucoma diagnosis performance. Specifically, we assess the expertness of each rater through an attentive glaucoma diagnosis network. For each rater, its contribution for the diagnosis will be reflected as an expertness map. To ensure the expertness maps are general for different glaucoma diagnosis models, we further propose an Expertness Generator (ExpG) to eliminate the high-frequency components in the optimization process. Based on the obtained expertness maps, the multi-rater labels can be fused as a single ground-truth which we dubbed as Diagnosis First Ground-truth (DiagFirstGT). Experimental results show that by using DiagFirstGT as ground-truth, OD/OC segmentation networks will predict the masks with superior glaucoma diagnosis performance.