论文标题
语义沟通符合边缘情报
Semantic Communication Meets Edge Intelligence
论文作者
论文摘要
预计新兴应用程序(例如自主运输系统)的开发将导致移动数据流量的爆炸性增长。随着可用的频谱资源变得越来越稀缺,从香农的古典信息理论(CIT)到语义通信(SEMCOM)的范式越来越需要转变。具体而言,前者采用了一种“传递前面的理解”方法,而后者则利用人工智能(AI)技术“理解之前的传输”,从而通过减少要交换的数据数量而不否定传输符号的语义有效性来减轻带宽的压力。但是,语义提取(SE)程序会产生昂贵的计算和存储开销。在本文中,我们介绍了SE的边缘驱动培训,维护和执行。我们进一步研究了如何通过在较低的计算开销中提高智能代理的概括能力并减少信息交换的通信开销,从而通过SEMCOM来增强边缘智能。最后,我们提出了一个案例研究,涉及无线电力互联网(IoT)的语义感知资源优化。
The development of emerging applications, such as autonomous transportation systems, are expected to result in an explosive growth in mobile data traffic. As the available spectrum resource becomes more and more scarce, there is a growing need for a paradigm shift from Shannon's Classical Information Theory (CIT) to semantic communication (SemCom). Specifically, the former adopts a "transmit-before-understanding" approach while the latter leverages artificial intelligence (AI) techniques to "understand-before-transmit", thereby alleviating bandwidth pressure by reducing the amount of data to be exchanged without negating the semantic effectiveness of the transmitted symbols. However, the semantic extraction (SE) procedure incurs costly computation and storage overheads. In this article, we introduce an edge-driven training, maintenance, and execution of SE. We further investigate how edge intelligence can be enhanced with SemCom through improving the generalization capabilities of intelligent agents at lower computation overheads and reducing the communication overhead of information exchange. Finally, we present a case study involving semantic-aware resource optimization for the wireless powered Internet of Things (IoT).