论文标题

塔川数的椭圆形曲线与扭转点

Tamagawa numbers of elliptic curves with torsion points

论文作者

Melistas, Mentzelos

论文摘要

让$ k $为全球领域,让$ e/k $为椭圆形曲线,具有$ k $ - 理性订单$ p $。在本文中,我们对$ e/k $的(全球)tamagawa $ c(e/k)$ c(e/k)的频率很感兴趣,可除以$ p $。考虑到分数$ c(e/ k)/ | e(k)_ {\ text {tors}} | $出现在桦木和swinnerton-dyer猜想的第二部分中,这是一个自然的问题。我们专注于在全球字段上定义的椭圆曲线,但我们也证明了在$ \ Mathbb {q} $上定义的更高维的Abelian品种的结果。

Let $K$ be a global field and let $E/K$ be an elliptic curve with a $K$-rational point of prime order $p$. In this paper we are interested in how often the (global) Tamagawa number $c(E/K)$ of $E/K$ is divisible by $p$. This is a natural question to consider in view of the fact that the fraction $c(E/K)/ |E(K)_{\text{tors}}|$ appears in the second part of the Birch and Swinnerton-Dyer Conjecture. We focus on elliptic curves defined over global fields, but we also prove a result for higher dimensional abelian varieties defined over $\mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源