论文标题
抛物线束的理论方面在真实曲线上
A gauge theoretic aspect of parabolic bundles over real curves
论文作者
论文摘要
在本文中,我们研究了实际曲线$(x,σ_x)$上的真实和Quaternionic抛物线束的量规理论方面,其中X是紧凑的Riemann表面,而σx是一种反旋晶的参与。对于平滑的抛物线束上的固定的真实或Quaternionic结构,我们检查了适当的量规组下真实或Quaternionic连接的轨道空间。相应的量规理论的商位于全体形态抛物线束的真实点内,在紧凑的Riemann Surface $ x $上具有固定的抛物线类型。
In this article, we study the gauge theoretic aspects of real and quaternionic parabolic bundles over a real curve $(X, σ_X)$, where X is a compact Riemann surface and σX is an anti-holomorphic involution. For a fixed real or quaternionic structure on a smooth parabolic bundle, we examine the orbits space of real or quaternionic connection under the appropriate gauge group. The corresponding gauge-theoretic quotients sit inside the real points of the moduli of holomorphic parabolic bundles having a fixed parabolic type on a compact Riemann surface $X$.