论文标题
具有四倍各向异性的有限2DXY模型的重新归一化组分析:应用于铁磁超薄膜的磁敏感性
Renormalization group analysis of the finite 2DXY model with fourfold anisotropy: Application to the magnetic susceptibility of a ferromagnetic ultrathin film
论文作者
论文摘要
描述具有四倍各向异性的有限2DXY系统的重新归一化组方程以两个步骤求解,以便研究超薄膜中的磁过渡到参磁性。首先,将方程式在临界耦合$ k = j/k_bt = 2/π$附近进行线性化。线性化方程的精确溶液证实,有限大小的kosterlitz- thouless(KT)过渡发生在存在弱的四倍各向异性的情况下,并且对于强各向异性而言发生了一个Ising转变。给定系统的行为取决于各向异性参数的乘积和系统大小的对数。线性化的RG方程在有限尺寸过渡的整个温度范围内并非定量可靠,但是它们定义了参数空间,其中第二种方法(其中四倍的各向异性被视为扰动)是有效的。这种扰动处理提供了整个过渡过程中重新归一化的交换耦合,涡旋密度和各向异性的定量确定。特别是,耦合具有通用的拐点,其中涡流 - 抗体对未连接(与“通用跳跃”相对),并且正如有限系统所期望的那样,在顺磁状态下渐近地渐近地达到零。这些结果用于计算磁敏感性,因为系统从一个由自旋波统治的系统移动到以游离涡流气体为主导的一个。各向异性的存在使得由于磁化强度的波动而导致易感性$χ_{||} $,以及由于四倍易于轴的磁化的角度波动而引起的$χ_\ perp $。与超薄Fe/W(001)膜的磁敏感性最近测量的比较非常令人鼓舞。
The renormalization group equations describing a finite 2DXY system with fourfold anisotropy are solved in two steps, in order to study the magnetic transition to paramagnetism in an ultrathin film. First, the equations are linearized near the critical coupling $K=J/k_BT=2/π$. An exact solution of the linearized equations confirms that a finite-size Kosterlitz-Thouless (KT) transition occurs in the presence of weak fourfold anisotropy, and that an Ising transition occurs for strong anisotropy. The behaviour of a given system is determined by the product of an anisotropy parameter and the logarithm of the system size. The linearized RG equations are not quantitatively reliable across the full temperature range of the finite-size transition, but they define the parameter space where a second approach, where the fourfold anisotropy is treated as a perturbation, is valid. This perturbative treatment provides a quantitative determination of the renormalized exchange coupling, vortex density, and anisotropy throughout the transition. In particular, the coupling has a universal point of inflection where vortex-antivortex pairs unbind (as opposed to a "universal jump"), and goes to zero asymptotically in the paramagnetic state, as is expected for a finite system. These results are used to calculate the magnetic susceptibility as the system moves from one dominated by spin waves to one dominated by a free vortex gas. The presence of anisotropy makes it necessary to include both the susceptibility $χ_{||}$ due to fluctuations of the magnitude of the magnetization, and $χ_\perp$ due to angular fluctuations of the magnetization about a fourfold easy axis. A comparison to recent measurements of the magnetic susceptibility of ultrathin Fe/W(001) films is very encouraging.