论文标题
对深度学习深度捕获内容检测方法的评论
A Review of Deep Learning-based Approaches for Deepfake Content Detection
论文作者
论文摘要
深度学习生成模型的最新进展引起了人们的关注,因为它们可以创建令人信服的伪造图像和视频。这对人们的诚信构成了威胁,并可能导致社会不稳定。为了解决这个问题,有迫切需要开发新的计算模型,这些模型可以有效地检测到伪造的内容并提醒用户潜在的图像和视频操作。本文对使用基于深度学习的方法进行了对最新研究的最新研究的全面综述。我们旨在通过系统地回顾伪造内容检测的不同类别来扩大最先进的研究。此外,我们报告了所检查作品的优点和缺点,并规定了关于Deepfake检测仍然无法解决的问题和缺点的未来一些方向。
Recent advancements in deep learning generative models have raised concerns as they can create highly convincing counterfeit images and videos. This poses a threat to people's integrity and can lead to social instability. To address this issue, there is a pressing need to develop new computational models that can efficiently detect forged content and alert users to potential image and video manipulations. This paper presents a comprehensive review of recent studies for deepfake content detection using deep learning-based approaches. We aim to broaden the state-of-the-art research by systematically reviewing the different categories of fake content detection. Furthermore, we report the advantages and drawbacks of the examined works, and prescribe several future directions towards the issues and shortcomings still unsolved on deepfake detection.