论文标题
实时蒙特卡洛(Monte Carlo)与重量共享内核预测网络
Real-time Monte Carlo Denoising with Weight Sharing Kernel Prediction Network
论文作者
论文摘要
实时的蒙特卡洛·德诺化的目的是在严格的时间预算中消除每个像素(SPP)低样本下的严重噪音。最近,内核预测方法使用神经网络来预测每个像素的滤波内核,并显示出消除蒙特卡洛噪声的巨大潜力。但是,重型计算架空架空阻止了这些方法从实时应用程序中阻止。本文扩展了内核预测方法,并提出了一种新颖的方法,以实时框架速率以非常低的spp(例如1-SPP)蒙特卡洛路径追踪图像。我们没有使用神经网络直接预测内核图,即每个像素滤波内核的完整权重,而是预测内核图的编码,然后进行高效解码器,并具有不断增长的操作,以进行过滤核的高素质重建。内核映射编码得出内核图的紧凑单通道表示,该表示可以大大减少内核预测网络的吞吐量。此外,我们采用可扩展的内核融合模块来提高降解质量。所提出的方法保留了内核预测方法的降级质量,同时将其用于1-SPP噪声输入的降低时间。此外,与最近的神经双侧网格的实时Denoiser相比,我们的方法受益于基于内核的重建的高平行性,并在同样的时间产生更好的降解结果。
Real-time Monte Carlo denoising aims at removing severe noise under low samples per pixel (spp) in a strict time budget. Recently, kernel-prediction methods use a neural network to predict each pixel's filtering kernel and have shown a great potential to remove Monte Carlo noise. However, the heavy computation overhead blocks these methods from real-time applications. This paper expands the kernel-prediction method and proposes a novel approach to denoise very low spp (e.g., 1-spp) Monte Carlo path traced images at real-time frame rates. Instead of using the neural network to directly predict the kernel map, i.e., the complete weights of each per-pixel filtering kernel, we predict an encoding of the kernel map, followed by a high-efficiency decoder with unfolding operations for a high-quality reconstruction of the filtering kernels. The kernel map encoding yields a compact single-channel representation of the kernel map, which can significantly reduce the kernel-prediction network's throughput. In addition, we adopt a scalable kernel fusion module to improve denoising quality. The proposed approach preserves kernel prediction methods' denoising quality while roughly halving its denoising time for 1-spp noisy inputs. In addition, compared with the recent neural bilateral grid-based real-time denoiser, our approach benefits from the high parallelism of kernel-based reconstruction and produces better denoising results at equal time.