论文标题
基于视觉机器人控制的统计保证的故障预测
Failure Prediction with Statistical Guarantees for Vision-Based Robot Control
论文作者
论文摘要
我们的动机是由具有高维传感器观察(例如视觉)进行安全关键机器人系统执行故障预测的问题。给定对黑框控制策略(例如,以神经网络的形式)和培训环境数据集的访问权限,我们提出了一种合成失败预测变量的方法,该预测变量具有错误的阳性和假阴性错误的范围。为了实现这一目标,我们利用可能是近似正确的(PAC) - 划线理论的技术。此外,我们提出了新颖的课堂条件界限,使我们能够权衡假阳性与假阴性错误的相对速率。我们提出的算法通过最小化我们的理论误差界限来训练故障预测因子(将传感器观察的历史记录)。我们使用广泛的模拟和硬件实验来证明最终的方法,用于基于视觉的导航,并使用配备有腕部安装的RGB-D摄像头的机器人操纵器抓住对象。这些实验说明了我们方法(1)的能力(1)在故障预测错误率(与经验错误率非常匹配)上提供了强大的界限,并且(2)通过预测故障来提高安全性。
We are motivated by the problem of performing failure prediction for safety-critical robotic systems with high-dimensional sensor observations (e.g., vision). Given access to a black-box control policy (e.g., in the form of a neural network) and a dataset of training environments, we present an approach for synthesizing a failure predictor with guaranteed bounds on false-positive and false-negative errors. In order to achieve this, we utilize techniques from Probably Approximately Correct (PAC)-Bayes generalization theory. In addition, we present novel class-conditional bounds that allow us to trade-off the relative rates of false-positive vs. false-negative errors. We propose algorithms that train failure predictors (that take as input the history of sensor observations) by minimizing our theoretical error bounds. We demonstrate the resulting approach using extensive simulation and hardware experiments for vision-based navigation with a drone and grasping objects with a robotic manipulator equipped with a wrist-mounted RGB-D camera. These experiments illustrate the ability of our approach to (1) provide strong bounds on failure prediction error rates (that closely match empirical error rates), and (2) improve safety by predicting failures.